
In this Chapter
 » Introduction
 » Syntax Errors
 » Exceptions
 » Built-in Exceptions
 » Raising Exceptions
 » Handling Exceptions
 » Finally Clause

Chapter

“I like my code to be elegant and efficient. The logic
should be straightforward to make it hard for bugs to hide,
the dependencies minimal to ease maintenance, error handling
complete according to an articulated strategy, and performance

close to optimal so as not to tempt people to make the code messy
with unprincipled optimization. Clean code does one thing well.”

— Bjarne Stroustrup

1.1 IntroductIon

Sometimes while executing a Python program, the
program does not execute at all or the program
executes but generates unexpected output or
behaves abnormally. These occur when there are
syntax errors, runtime errors or logical errors in
the code. In Python, exceptions are errors that
get triggered automatically. However, exceptions
can be forcefully triggered and handled through
program code. In this chapter, we will learn about
exception handling in Python programs.

1.2 Syntax ErrorS

Syntax errors are detected when we have not
followed the rules of the particular programming
language while writing a program. These errors are
also known as parsing errors. On encountering a
syntax error, the interpreter does not execute the
program unless we rectify the errors, save and

1
Exception Handling
in Python

Chapter 1.indd 1 18-Jun-21 2:27:38 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon2

rerun the program. When a syntax error is encountered
while working in shell mode, Python displays the name
of the error and a small description about the error as
shown in Figure 1.1.

So, a syntax error is reported by the Python
interpreter giving a brief explanation about the error
and a suggestion to rectify it.

Similarly, when a syntax error is encountered while
running a program in script mode as shown in Figure
1.2, a dialog box specifying the name of the error (Figure
1.3) and a small description about the error is displayed.

Figure 1.2: An error in the script

Figure 1.3: Error dialog box

Figure 1.1: A syntax error displayed in Python shell mode

Chapter 1.indd 2 18-Jun-21 2:27:38 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon 3

1.3 ExcEptIonS

Even if a statement or expression is syntactically
correct, there might arise an error during its execution.
For example, trying to open a file that does not exist,
division by zero and so on. Such types of errors might
disrupt the normal execution of the program and are
called exceptions.

An exception is a Python object that represents an
error. When an error occurs during the execution of a
program, an exception is said to have been raised. Such
an exception needs to be handled by the programmer
so that the program does not terminate abnormally.
Therefore, while designing a program, a programmer
may anticipate such erroneous situations that may arise
during its execution and can address them by including
appropriate code to handle that exception.

It is to be noted that SyntaxError shown at Figures
1.1 and 1.3 is also an exception. But, all other exceptions
are generated when a program is syntactically correct.

1.4 BuIlt-In ExcEptIonS

Commonly occurring exceptions are usually defined
in the compiler/interpreter. These are called built-in
exceptions.

Python’s standard library is an extensive collection
of built-in exceptions that deals with the commonly
occurring errors (exceptions) by providing the
standardized solutions for such errors. On the occurrence
of any built-in exception, the appropriate exception
handler code is executed which displays the reason
along with the raised exception name. The programmer
then has to take appropriate action to handle it. Some
of the commonly occurring built-in exceptions that can
be raised in Python are explained in Table 1.1.

Table 1.1 Built-in exceptions in Python

S. No Name of the Built-
in Exception Explanation

1. SyntaxError It is raised when there is an error in the syntax of the Python code.

2. ValueError It is raised when a built-in method or operation receives an argument
that has the right data type but mismatched or inappropriate values.

3. IOError It is raised when the file specified in a program statement cannot be
opened.

Chapter 1.indd 3 18-Jun-21 2:27:38 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon4

4 KeyboardInterrupt It is raised when the user accidentally hits the Delete or Esc key
while executing a program due to which the normal flow of the
program is interrupted.

5 ImportError It is raised when the requested module definition is not found.

6 EOFError It is raised when the end of file condition is reached without reading
any data by input().

7 ZeroDivisionError It is raised when the denominator in a division operation is zero.

8 IndexError It is raised when the index or subscript in a sequence is out of range.

9 NameError It is raised when a local or global variable name is not defined.

10 IndentationError It is raised due to incorrect indentation in the program code.

11 TypeError It is raised when an operator is supplied with a value of incorrect
data type.

12 OverFlowError It is raised when the result of a calculation exceeds the maximum
limit for numeric data type.

Figure 1.4 shows the built-in exceptions viz,
ZeroDivisionError, NameEError, and TypeError raised
by the Python interpreter in different situations.

Figure 1.4: Example of built-in exceptions

A programmer can also create custom exceptions to
suit one’s requirements. These are called user-defined
exceptions. We will learn how to handle exceptions in
the next section.

1.5 raISIng ExcEptIonS

Each time an error is detected in a program, the Python
interpreter raises (throws) an exception. Exception

Chapter 1.indd 4 18-Jun-21 2:27:39 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon 5

handlers are designed to execute when a specific
exception is raised. Programmers can also forcefully
raise exceptions in a program using the raise and assert
statements. Once an exception is raised, no further
statement in the current block of code is executed. So,
raising an exception involves interrupting the normal
flow execution of program and jumping to that part of
the program (exception handler code) which is written
to handle such exceptional situations.

1.5.1 The raise Statement
The raise statement can be used to throw an exception.
The syntax of raise statement is:

raise exception-name[(optional argument)]

The argument is generally a string that is displayed
when the exception is raised. For example, when an
exception is raised as shown in Figure 1.5, the message
“OOPS : An Exception has occurred” is displayed along
with a brief description of the error.

Figure 1.5: Use of the raise statement to throw an exception

The error detected may be a built-in exception or
may be a user-defined one. Consider the example given
in Figure 1.6 that uses the raise statement to raise a
built-in exception called IndexError.
Note: In this case, the user has only raised the exception but
has not displayed any error message explicitly.

In Figure 1.6, since the value of variable length
is greater than the length of the list numbers, an
IndexError exception will be raised. The statement
following the raise statement will not be executed. So
the message “NO EXECUTION” will not be displayed in
this case.

Chapter 1.indd 5 18-Jun-21 2:27:39 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon6

As we can see in Figure 1.6, in addition to the
error message displayed, Python also displays a stack
Traceback. This is a structured block of text that
contains information about the sequence of function
calls that have been made in the branch of execution of
code in which the exception was raised. In Figure 1.6,
the error has been encountered in the most recently
called function that has been executed.

Figure 1.6: Use of raise statement with built-in exception

Program 1-1 Use of assert statement

print("use of assert statement")
def negativecheck(number):
 assert(number>=0), "OOPS... Negative Number"

Note: We will learn about Stack in Chapter 3.

1.5.2 The assert Statement
An assert statement in Python is used to test an
expression in the program code. If the result after testing
comes false, then the exception is raised. This statement
is generally used in the beginning of the function or after
a function call to check for valid input. The syntax for
assert statement is:
 assert Expression[,arguments]

On encountering an assert statement, Python
evaluates the expression given immediately after
the assert keyword. If this expression is false, an
AssertionError exception is raised which can be handled
like any other exception. Consider the code given in
Program 1-1.

Chapter 1.indd 6 18-Jun-21 2:27:39 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon 7

 print(number*number)
print (negativecheck(100))
print (negativecheck(-350))

Figure 1.7: Output of Program 1-1.

In the code, the assert statement checks for the
value of the variable number. In case the number gets
a negative value, AssertionError will be thrown, and
subsequent statements will not be executed. Hence,
on passing a negative value (-350) as an argument, it
results in AssertionError and displays the message
“OOPS…. Negative Number”. The output of the code is
shown in Figure 1.7.

1.6 HandlIng ExcEptIonS

Each and every exception has to be handled by the
programmer to avoid the program from crashing
abruptly. This is done by writing additional code in
a program to give proper messages or instructions to
the user on encountering an exception. This process is
known as exception handling.

1.6.1 Need for Exception Handling
Exception handling is being used not only in Python
programming but in most programming languages like
C++, Java, Ruby, etc. It is a useful technique that helps
in capturing runtime errors and handling them so as to
avoid the program getting crashed. Following are some

Chapter 1.indd 7 18-Jun-21 2:27:39 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon8

of the important points regarding exceptions and their
handling:
• Python categorises exceptions into distinct types so

that specific exception handlers (code to handle that
particular exception) can be created for each type.

• Exception handlers separate the main logic of the
program from the error detection and correction
code. The segment of code where there is any
possibility of error or exception, is placed inside one
block. The code to be executed in case the exception
has occurred, is placed inside another block. These
statements for detection and reporting the exception
do not affect the main logic of the program.

• The compiler or interpreter keeps track of the exact
position where the error has occurred.

• Exception handling can be done for both user-defined
and built-in exceptions.

1.6.2 Process of Handling Exception
When an error occurs, Python interpreter creates an
object called the exception object. This object contains
information about the error like its type, file name and
position in the program where the error has occurred.
The object is handed over to the runtime system so that
it can find an appropriate code to handle this particular
exception. This process of creating an exception object
and handing it over to the runtime system is called
throwing an exception. It is important to note that
when an exception occurs while executing a particular
program statement, the control jumps to an exception
handler, abandoning execution of the remaining
program statements.

The runtime system searches the entire program
for a block of code, called the exception handler that
can handle the raised exception. It first searches for
the method in which the error has occurred and the
exception has been raised. If not found, then it searches
the method from which this method (in which exception
was raised) was called. This hierarchical search in
reverse order continues till the exception handler is
found. This entire list of methods is known as call stack.
When a suitable handler is found in the call stack, it
is executed by the runtime process. This process of

A runtime system
refers to the

execution of the
statements given in
the program. It is a
complex mechanism

consisting of
hardware and
software that

comes into action
as soon as the

program, written in
any programming

language, is put for
execution.

Chapter 1.indd 8 18-Jun-21 2:27:39 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon 9

executing a suitable handler is known as catching the
exception. If the runtime system is not able to find an
appropriate exception after searching all the methods in
the call stack, then the program execution stops.

The flowchart in Figure 1.8 describes the exception
handling process.

Figure 1.8: Steps of handling exception

1.6.3 Catching Exceptions
An exception is said to be caught when a code that is
designed to handle a particular exception is executed.
Exceptions, if any, are caught in the try block and

Chapter 1.indd 9 07-Sep-21 4:24:55 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon10

handled in the except block. While writing or debugging
a program, a user might doubt an exception to occur
in a particular part of the code. Such suspicious
lines of codes are put inside a try block. Every try
block is followed by an except block. The appropriate
code to handle each of the possible exceptions (in
the code inside the try block) are written inside the
except clause.

While executing the program, if an exception is
encountered, further execution of the code inside the
try block is stopped and the control is transferred to
the except block. The syntax of try … except clause
is as follows:

 try:
[program statements where exceptions might occur]

except [exception-name]:

[code for exception handling if the exception-name error is
encountered]

Consider the Program 1-2 given below:

Program 1-2 Using try..except block

print ("Practicing for try block")
try:
 numerator=50
 denom=int(input("Enter the denominator"))
 quotient=(numerator/denom)
 print(quotient)
 print ("Division performed successfully")
except ZeroDivisionError:
 print ("Denominator as ZERO.... not allowed")
print(“OUTSIDE try..except block”)

In Program 1-2, the ZeroDivisionError exception
is handled. If the user enters any non-zero value as
denominator, the quotient will be displayed along with
the message “Division performed successfully”, as
shown in Figure 1.10. The except clause will be skipped
in this case. So, the next statement after the try..except
block is executed and the message “OUTSIDE try..
except block” is displayed.

However, if the user enters the value of denom as
zero (0), then the execution of the try block will stop.
The control will shift to the except block and the
message “Denominator as Zero…. not allowed” will
be displayed, as shown in Figure 1.11. Thereafter, the

Chapter 1.indd 10 07-Sep-21 4:25:24 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon 11

statement following the try..except block is executed
and the message “OUTSIDE try..except block” is
displayed in this case also.

Sometimes, a single piece of code might be suspected
to have more than one type of error. For handling such
situations, we can have multiple except blocks for a
single try block as shown in the Program 1-3.

Program 1-3 Use of multiple except clauses

print ("Handling multiple exceptions")
try:
 numerator=50
 denom=int(input("Enter the denominator: "))
 print (numerator/denom)
 print ("Division performed successfully")
except ZeroDivisionError:
 print ("Denominator as ZERO is not allowed")
except ValueError:
 print ("Only INTEGERS should be entered")

Figure 1.9: Output without an error

Figure 1.10: Output with exception raised

Chapter 1.indd 11 18-Jun-21 2:27:41 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon12

In the code, two types of exceptions (ZeroDivisionError
and ValueError) are handled using two except blocks
for a single try block. When an exception is raised,
a search for the matching except block is made till
it is handled. If no match is found, then the program
terminates.

However, if an exception is raised for which no
handler is created by the programmer, then such an
exception can be handled by adding an except clause
without specifying any exception. This except clause
should be added as the last clause of the try..except
block. The Program 1-4 given below along with the
output given in Figure 1.11 explains this.

Program 1-4 Use of except without specifying an exception

print ("Handling exceptions without naming them")
try:
 numerator=50
 denom=int(input("Enter the denominator"))
 quotient=(numerator/denom)
 print ("Division performed successfully")
except ValueError:
 print ("Only INTEGERS should be entered")
except:
 print(" OOPS.....SOME EXCEPTION RAISED")

Figure 1.11: Output of Program 1-4

1.6.4 try...except…else clause
We can put an optional else clause along with the
try...except clause. An except block will be executed

If the above code is executed, and the denominator
entered is 0 (zero) , the handler for ZeroDivisionError
exception will be searched. Since it is not present, the
last except clause (without any specified exception)
will be executed , so the message “ OOPS.....SOME
EXCEPTION RAISED” will be displayed.

Chapter 1.indd 12 18-Jun-21 2:27:41 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon 13

Program 1-5 Use of else clause

print ("Handling exception using try...except...else")
try:
 numerator=50
 denom=int(input("Enter the denominator: "))
 quotient=(numerator/denom)
 print ("Division performed successfully")

except ZeroDivisionError:
 print ("Denominator as ZERO is not allowed")

except ValueError:
 print ("Only INTEGERS should be entered")

else:
 print ("The result of division operation is ", quotient)

Output:

Figure 1.12: Output of Program 1-5.

1.7 FInally clauSE

The try statement in Python can also have an optional
finally clause. The statements inside the finally block
are always executed regardless of whether an exception
has occurred in the try block or not. It is a common
practice to use finally clause while working with files
to ensure that the file object is closed. If used, finally
should always be placed at the end of try clause, after
all except blocks and the else block.

only if some exception is raised in the try block. But if
there is no error then none of the except blocks will
be executed. In this case, the statements inside the
else clause will be executed. Program 1-5 along with
its output explains the use of else block with the try...
except block.

Chapter 1.indd 13 18-Jun-21 2:27:41 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon14

Program 1-6 Use of finally clause

print ("Handling exception using try...except...else...finally")
try:
 numerator=50
 denom=int(input("Enter the denominator: "))
 quotient=(numerator/denom)
 print ("Division performed successfully")
except ZeroDivisionError:
 print ("Denominator as ZERO is not allowed")
except ValueError:
 print ("Only INTEGERS should be entered")
else:
 print ("The result of division operation is ", quotient)
finally:
 print ("OVER AND OUT")

Program 1-7 Recovering through finally clause

print (" Practicing for try block")
try:
 numerator=50
 denom=int(input("Enter the denominator"))
 quotient=(numerator/denom)
 print ("Division performed successfully")
except ZeroDivisionError:
 print ("Denominator as ZERO is not allowed")
else:
 print ("The result of division operation is ", quotient)
finally:
 print ("OVER AND OUT")

In the above program, the message “OVER AND OUT”
will be displayed irrespective of whether an exception is
raised or not.

1.6.1 Recovering and continuing with finally clause
If an error has been detected in the try block and the
exception has been thrown, the appropriate except
block will be executed to handle the error. But if the
exception is not handled by any of the except clauses,
then it is re-raised after the execution of the finally
block. For example, Program 1.4 contains only the
except block for ZeroDivisionError. If any other
type of error occurs for which there is no handler code
(except clause) defined, then also the finally clause will
be executed first. Consider the code given in Program
1-7 to understand these concepts.

Chapter 1.indd 14 18-Jun-21 2:27:41 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon 15

While executing the above code, if we enter a
non-numeric data as input, the finally block will be
executed. So, the message “OVER AND OUT” will be
displayed. Thereafter the exception for which handler is
not present will be re-raised. The output of Program 1-7
is shown in Figure 1.13.

Figure 1.13: Output of Program 1-7

After execution of finally block, Python transfers
the control to a previously entered try or to the next
higher level default exception handler. In such a case,
the statements following the finally block is executed.
That is, unlike except, execution of the finally clause
does not terminate the exception. Rather, the exception
continues to be raised after execution of finally.

To summarise, we put a piece of code where there
are possibilities of errors or exceptions to occur inside
a try block. Inside each except clause we define handler
codes to handle the matching exception raised in the
try block. The optional else clause contains codes to
be executed if no exception occurs. The optional finally
block contains codes to be executed irrespective of
whether an exception occurs or not.

Summary

• Syntax errors or parsing errors are detected when
we have not followed the rules of the particular
programming language while writing a program.

Chapter 1.indd 15 18-Jun-21 2:27:41 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon16

• When syntax error is encountered, Python displays
the name of the error and a small description
about the error.

• The execution of the program will start only after
the syntax error is rectified.

• An exception is a Python object that represents
an error.

• Syntax errors are also handled as exceptions.
• The exception needs to be handled by the

programmer so that the program does not
terminate abruptly.

• When an exception occurs during execution
of a program and there is a built-in exception
defined for that, the error message written in that
exception is displayed. The programmer then has
to take appropriate action and handle it.

• Some of the commonly occurring built-in
exceptions are SyntaxError, ValueError,
IOError, KeyboardInterrupt, ImportError,
EOFError, ZeroDivisionError, IndexError,
NameError, IndentationError, TypeError,and
OverFlowerror.

• When an error is encountered in a program,
Python interpreter raises or throws an exception.

• Exception Handlers are the codes that are
designed to execute when a specific exception
is raised.

• Raising an exception involves interrupting the
normal flow of the program execution and jumping
to the exception handler.

• Raise and assert statements are used to raise
exceptions.

• The process of exception handling involves
writing additional code to give proper messages
or instructions to the user. This prevents the
program from crashing abruptly. The additional
code is known as an exception handler.

• An exception is said to be caught when a code
that is designed to handle a particular exception
is executed.

• An exception is caught in the try block and
handles in except block.

notES

Chapter 1.indd 16 18-Jun-21 2:27:41 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon 17

ExErcisE
1. “Every syntax error is an exception but every exception

cannot be a syntax error.” Justify the statement.
2. When are the following built-in exceptions raised? Give

examples to support your answers.
a) ImportError
b) IOError
c) NameError
d) ZeroDivisionError

3. What is the use of a raise statement? Write a code to
accept two numbers and display the quotient. Appropriate
exception should be raised if the user enters the second
number (denominator) as zero (0).

4. Use assert statement in Question No. 3 to test the
division expression in the program.

5. Define the following:
a) Exception Handling
b) Throwing an exception
c) Catching an exception

6. Explain catching exceptions using try and except block.
7. Consider the code given below and fill in the blanks.

print (" Learning Exceptions...")

try:

 num1= int(input ("Enter the first number"))

 num2=int(input("Enter the second number"))

 quotient=(num1/num2)

 print ("Both the numbers entered were correct")

except _____________: # to enter only integers

 print (" Please enter only numbers")

except ____________: # Denominator should not be zero
 print(" Number 2 should not be zero")

else:
 print(" Great .. you are a good programmer")

___________: # to be executed at the end

 print(" JOB OVER... GO GET SOME REST")

• The statements inside the finally block are always
executed regardless of whether an exception
occurred in the try block or not.

Chapter 1.indd 17 07-Sep-21 5:03:00 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii eXCeption Handling in pytHon18

8. You have learnt how to use math module in Class
XI. Write a code where you use the wrong number of
arguments for a method (say sqrt() or pow()). Use the
exception handling process to catch the ValueError
exception.

9. What is the use of finally clause? Use finally clause in
the problem given in Question No. 7.

notES

Chapter 1.indd 18 18-Jun-21 2:27:41 PM

Reprint 2025-26

	lecs1ps
	lecs101
	lecs102
	lecs103
	lecs104
	lecs105
	lecs106
	lecs107
	lecs108
	lecs109
	lecs110
	lecs111
	lecs112
	lecs113

